Final exam program

on discipline "Nuclear astrophysics" for 1st course master students of specialty "6M060400 – Physics"

The proposed program for the discipline "Nuclear astrophysics" is made according to the discipline's syllabus. The program determines the requirements for the levels of mastering the academic discipline, to which the student should be capable of learning: describe acquired knowledge (specifically) and it's understanding; interpret an understanding of the overall structure of the study field and the relations between its elements (specifically); generalize new knowledge in the context of basic knowledge, interpret its contents; create educational and social interaction and cooperation in the group; explain the solution of the problem, its importance; classify criticism and to criticize; decide to work in a team; combine the role of taken course in the implementation of individual learning paths. The system of descriptor verbs must be used during the formation of competences; design active and interactive methods which are recommended to ensure deeper understanding and learning of educational material and to achieve learning outcomes of the course.

The aim of the course: to give the students the deep understanding of the modern physics of nucleus of atoms and quantum mechanics of many-particle systems and self-study

At the exam, students will be asked three theoretical questions (the first two are 33 points each and the third are 34 points each).

and a		
1.	Give definition and describe the complete density of energy and	Lecture № 1
	energy falling on one baryon in terms of concentration of	
	baryons	
2.	Describe the expression for a quantity of heat received in terms	Lecture № 1
	of one baryon	
3.	Give definition of an equilibrium condition in an element of	Lecture № 2
	Wednesday through warmth and entropy, falling on one baryon	
4.	Explain the first law of thermodynamics through the energy	Lecture № 2
	falling on one baryon, and concentration of baryons	
5.	Give values for weight and the radius of the Sun; the reference	Lecture № 2
	values for masses and the sizes of neutron stars, white dwarfs and	
	black holes in mass units and the extent of the Sun; the range of	
	values of mass of stars - predecessors of compact stars (in Sun	
	mass units)	
6.	Describe dependence of warmth of dQ in an element of	Lecture № 3
	Wednesday from temperature of T and ds – an entropy on one	
	baryon	
7.	Explain and write down for an environment element in	Lecture № 4
	equilibrium the equation for the energy falling on one baryon	
	depending on pressure, volume (falling on one baryon) and	
	temperature	
8.	Explain write down for an environment element in equilibrium	Lecture № 4
	the equation for the energy falling on one baryon depending on	
	pressure, concentration of particles of a grade of i and their	
	chemical potential, and temperature	
9.	Describe and write down a differential equation of dependence	Lecture № 3
	of pressure and temperature on density of number of baryons	
10.	Give definition and describe a differential equation of	Lecture № 3
	dependence of chemical potential on density of number of	
	particles of a grade of i	

Exam questions:

11.	Characterize write down reactions of an electron capture and to offer an explanation of course of such reactions in superdense	Lecture № 4
	environments (crystals)	
12.	Give definition of a formula for the free energy counting on one baryon	Lecture № 5
13.	Describe Cumulative distribution function of particles in case of Fermi statisticians and in a case to Bosa statisticians	Lecture № 5
14.	Explain relativistic parameter in terms of an impulse of Fermi	Lecture № 5
15.	Characterize density of electrons through Fermi impulse for a	Lecture № 6
	degenerate electronic Fermi liquid	
16.	Express density of electrons of a degenerate electronic Fermi	Lecture № 6
	liquid through relativistic parameter	
17.	Describe expression for pressure of a degenerate electronic	Lecture № 6
	Fermi liquid in the form of integral on impulses of electrons.	
18.	Give values for weight and the radius of the Sun; to give the	Lecture № 5
	reference values for masses and the sizes of neutron stars, white	
	dwarfs and black holes in mass units and the extent of the Sun;	
	to give the range of values of mass of stars - predecessors of	
	compact stars (in Sun mass units)	
10	Give definition of reactions of an electron capture and to offer	Lecture No 5
17.	an explanation of course of such reactions in superdense	Lecture Me 5
	environments (crystals)	
20.	Explain Cumulative distribution function of particles in case of	Lecture № 7
	Fermi statisticians and in a case to Bosa statisticians	
21.	Characterize the expression for substance density through the	Lecture № 7
	mass of ions and density of their number	
22.	Describe substance equation of state in the form of a polytrope	Lecture № 7
	in case of nonrelativistic electrons	
23.	Describe substance equation of state in the form of a polytrope	Lecture № 7
	in case of relativistic electrons	
24.	Describe substance equation of state in the form of a polytrope	Lecture № 8
25	In case of nonrelativistic neutrons	Lastura No 8
25.	in case of relativistic neutrons	Lecture Me o
26	Explain the approximate relation of Coulomb energy to thermal	Lecture No 8
20.	energy for an undergenerate gas, to offer an explanation for this	
	relation	
27.	Give definition and describe the approximate relation of	Lecture № 8
	Coulomb energy to thermal energy for degenerate gas, to offer	
	an explanation for this relation	
28.	Explain the the inverse beta decay (reaction of an electron	Lecture № 9
	capture in superdense environments)	
29.	Describe Compact stars: origin, types and data of astrophysical	Lecture № 9
20	supervision	
30.	Give definition of white dwarfs: main characteristics, values of	Lecture № 9
	masses, communication of a brightness of stars with their characteristics; internal structure	
21	Give definition of white dwarfs: element structure filing	Lecture No Q
51.	methods spectral characteristics	
32	Give definition of white dwarfs: the reference reactions in a gas	Lecture No 8
54.	envelope and a solid core	
L	L	

33.	Describe Black holes: Chandrasekar's limit, methods of filing	Lecture № 9
	of black holes	
34.	Describe neutron stars: versions, methods of supervision	Lecture № 9
35.	Describe neutron stars: pulsars, glitches	Lecture № 8
36.	Describe neutron stars: microstructure pulsar of impulses	Lecture № 8
37.	Analyze double systems: neutron star and routine gas star,	Lecture № 8
	substance accretion phenomenon	
38.	Give definition and describe white dwarfs: the reference	Lecture № 9
	reactions in a gas envelope and a solid core	
39.	Analyze neutron stars: versions, methods of supervision	Lecture № 10
40.	Explain reactions of the inverse beta decay (reaction of an	Lecture № 13
	electron capture in superdense environments)	
41.	Explain double systems: black hole and routine gas star,	Lecture № 10
	substance accretion phenomenon	
42.	Describe double systems: neutron star and white dwarf,	Lecture № 10
	methods of filing and data of supervision	
43.	Give definition of brown dwarfs: main characteristics, methods	Lecture № 11
	and data of supervision	
44.	Explain red dwarfs: main characteristics, methods and data of	Lecture № 11
	supervision	
45.	Characterize types of the main forces: comparative	Lecture № 11
	characteristics, intensity and radiuses of action	T
46.	Describe weak couplings – their role in evolution of the	Lecture № 11
47	Universe and formation of substance	
47.	Give definition and describe the strong couplings - their role in	Lecture № 12
40	evolution of the Universe and formation of a matter	Lastura No. 10
48.	structures, stoms and molecules	Lecture Nº 12
/10	Explain the quantum chromodynamics their role in formation	Lecture No 12
47.	of kernels	Lecture Me 12
50	Describe the strange and quark stars – their main characteristics	Lecture No 13
201	and properties	
51.	Analyze the primary stage of evolution of the Universe – a role	Lecture No 13
	of the strong and weak forces	
52.	Explain primary stage of development of the Universe – a role	Lecture № 13
	of electromagnetic and gravitational forces in formation of	
	structures	
53.	Explain relict electromagnetic radiation, data of supervision and	Lecture № 14
	theory of the phenomenon	
54.	Explain relict neutrino radiation, data of supervision and theory	Lecture № 14
	of the phenomenon	
55.	Explain and describe dark matter – data of supervision, the	Lecture № 14
	main questions and problems	
56.	Explain and describe dark energy – data of supervision,	Lecture № 15
	problems and assumptions	
57.	Analyze nuclear reactions in gas stars, basis cycles of reactions	Lecture № 15
58.	Describe primary nucleosynthesis – the main reactions	Lecture № 15
59.	Describe problem of "a lithium failure" in abundance of	Lecture № 15
	chemical elements	T , 36 1
60.	Characterize the theory of a nucleosynthesis – formation of	Lecture № 15
	mild and average elements	

Evaluation and attestation policy Criteria-based evaluation:

Assessment of learning outcomes in correlation with descriptors (verification of competence formation during midterm control and examinations).

Summative evaluation:

50% - 54%: D-

evaluation of the presence and activity of the work in the classroom; assessment of the assignment, independent work of students, (project/casestudy/ program/...)

The formula for calculating the final grade.

Final grade for the discipline = $\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$ Below are the minimum estimates in percentage terms:95% - 100%: A90% - 94%: A-85% - 89%: B80% - 84%: B75% - 79%: B-65% - 69%: C60% - 64%: C-

LITERATURES

- Richard N. Boyd. An Introduction to Nuclear Astrophysics. University of Chicago Press (April 15, 2008)
- 2. Norman K. Glendenning. Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. Springer; 2nd edition (June 16, 2000)
- 3. D. Perlov, A.Vilenkin Cosmology for the Curious. Springer; 1st ed. 2017 edition. July 20, 2017
- 4. Gershberg R.E. Active solar-type main sequence stars. Odessa: Astroprint 2002.

0% -49%: F

- 5. B.Greene.The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory Hardcover October 17, 2003
- 6. Cotnikova R. T Astrophysics. Irkutsk .: RIO 2005.
- 7. A.G.W. Cameron and David Miles Kahl.Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis Dover Publications; 2 edition (March 21, 2013) Feb 21, 2013